Особенности применения титана в стоматологии

Актуальность исследования

Выбор материала для протеза является одним из важных этапов планирования протеза, так как от материала будут зависеть будущие свойства протеза. В настоящее время ортопедическая стоматология стремится объединить в себе сразу два ключевых и важных свойства стоматологических материалов – биоинертность и эстетичность.

Одним из материалов, обладающих первым качеством является титан. Использование титана в комплексе с облицовкой керамическими массами позволяет решить вторую задачу. Таким образом решаются обе задачи – биоинертность и эстетичность. Но в современной литературе, и даже при обучении в учебных заведениях, слабо освещены нюансы работы с титаном.

Преимущества и недостатки методов фиксации

В периодической системе Д.И. Менделеева титан имеет номер 22 (Ti). Внешне титан похож на сталь (рис.1).

Рис.1. Титановые имплантаты и абатменты.

Сплавы титана обладают высокими технологическими и физико-механическими свойствами, а также биоинертностью.

Конструкционные и высокопрочные титановые сплавы представляют собой твердые растворы, что позволяет им обеспечивать оптимальное соотношение характеристик прочности и пластичности.

Применение получили пористый титан, а также никелид титана, обладающий памятью формы в качестве материалов для имплантатов.

В зарубежной литературе существует точка зрения, по которой титан и его сплавы выступают альтернативой золоту. При контакте с воздухом происходит пассивизация, т.е. на поверхности титана образуется тонкий инертный слой оксида. К другим его достоинствам относятся низкая теплопроводность и способность соединяться с композиционными цементами и фарфором.

Недостатком является трудность получения отливки (чистый титан плавится при 1668°С и вступает в реакцию с традиционными формовочными массами и кислородом). Следовательно, он должен отливаться и спаиваться в специальных приборах в бескислородной среде. Разрабатываются сплавы титана с никелем, которые можно отливать традиционным методом (такой сплав выделяет очень мало ионов никеля и хорошо соединяется с фарфором).

Протезирование коронковой части зуба занимает ведущее место в клинике ортопедической стоматологии и используется во все периоды формирования и развития жевательного аппарата, начиная с грудного возраста и до глубокой старости. Особое место в ортопедии занимают титановые коронки, которые отличаются следующими характеристиками:

  • Биологическая инертность;
  • Легкость снятия коронки;
  • Низкая теплопроводность по сравнению с другими металлами и сплавами;
  • Маленький удельный вес, благодаря которому протезы получаются лёгкими;
  • Обладают высокой упругостью;
  • Меньшая прочность на истирание, чем нержавеющая сталь при протезировании молочных зубов.

Упоминая важность применения именно титановых коронок, следует остановиться на таком стоматологическом заболевании твердых тканей зуба, как аплазия и гипоплазия эмали. Эти дефекты представляют собой пороки развития твердых тканей зуба и возникают в результате нарушения минерального и белкового обмена в организме плода или ребенка.

Что же касается съёмного протезирования, то протезы с тонколистовыми титановыми базисами толщиной 0,3-0,7 мм имеют следующие основные преимущества перед протезами с базисами из других материалов:

  • абсолютную инертность к тканям полости рта, что полностью исключает возможность аллергической реакции на никель и хром, входящие в состав металлических базисов из других сплавов;
  • полное отсутствие токсического, термоизолирующего и аллергического воздействия, свойственного пластмассовым базисам;
  • малую толщину и массу при достаточной жесткости базиса благодаря высокой удельной прочности титана;
  • высокую точность воспроизведения мельчайших деталей рельефа протезного ложа, недостижимую для пластмассовых и литых базисов из других металлов;
  • существенное облегчение в привыкании пациента к протезу;
  • сохранение хорошей дикции и восприятия вкуса пищи.

Особенности применения титана в стоматологии

Несомненно, оба вида эндопротезирования имеют как преимущества, так и недостатки. Однако в целом исход операции зависит не только от стоимости и характеристик импланта. Как мы уже говорили: все в руках хирурга!

Таблица 2. Плюсы и минусы разных видов эндопротезирования.

 Цементный
  1. Невысокая стоимость.
  2. Равномерное распределение нагрузки на кость.
  3. Возможность добавить антибиотик в цемент с целью профилактики инфекции.
  4. Возможность установки при выраженном остеопорозе.
  1. Отсутствие выбора пары трения (только метал полиэтилен).
  2. Значительные сложности при выполнении ревизионных операций.
  3. Риск развития синдрома имплантации костного цемента.
 Бесцементный
  1. Возможность выбора пары трения.
  2. Более долгое функционирование за счет врастания в кость.
  3. Меньшее количество трудностей при выполнении ревизионных операций.
  4. Отсутствие риска развития синдрома имплантации костного цемента.
  1. Менее равномерное распределение нагрузки на кость.
  2. Риск недопогружения чашки импланта.
  3. Более высокая вероятность перелома в ходе хирургического вмешательства.

1.3. Особенности обработки титана (шлифовка и полировка)

Титан (Titanium) Ti — элемент IV группы 4-го периода периодической системы Д. И. Менделеева, порядковый номер 22, атомная масса 47,90. Получен в чистом виде лишь в 1925 г. Основное сырье — минералы рутил TiO2, ильменит FeTiO3 и др. Титан — тугоплавкий металл.

ПОДРОБНОСТИ:   Сколько времени болит колено после эндопротезирования

Получают титан восстановлением двуокиси титана металлическим кальцием, гидридом кальция, восстановлением четыреххлористого титана расплавленным натрием, металлическим магнием. Титан — перспективный материал для авиационной, химической и судостроительной промышленности и медицины. В большинстве случаев титан применяется в виде сплавов с алюминием, молибденом, ванадием, марганцем и другими металлами [9].

Табл.1.

Сравнительные свойства различных сплавов.

Свойства

Титан

Золото

КХС

Серебряно-палладиевый сплав

Нержавеющая сталь

Плотность (г/см³)

4,5

19,32

8,0

11-12

7,2-7,8

Твердость (HB) МПа

334

189

2500

600-1100

1400-1800

Прочность МПа (Н/мм2), Rm

522-784

122

650

280

450

Модуль упругости, ГПа

112-114

79

222

130-135

193

Температура плавления (°С)

1668

1064

1460

1100-1200

1450-1500

Теплопроводность Вт/(м•К)

14-21,9

300-318

250-280

400-418

160-190

КТР
(α•10–6°C–1)

9,6

14,2

13,5-14,2

14,8

17,5

Известно, что некоторые химические элементы могут существовать в виде двух или более простых веществ, отличающихся по строениям и свойству. Обычно вещество переходит из одной аллотропной модификации в другую при постоянной температуре. Титан имеет две такие модификации. α-модификация титана существует при температуре до 882,5 °С. Высокотемпературная β-модификация может быть устойчивой от 882,5 °С до температуры плавления.

Легирующие элементы придают титановому сплаву различные свойства. Для этого используются алюминий, молибден, марганец, хром, медь, железо, олово, цирконий, кремний, никель, и другие.

Легирующие добавки по-разному ведут себя в различных аллотропных модификациях титана. Изменяют они и температуру, при которой происходит α/β-переход. Так, увеличение концентрации алюминия, кислорода и азота в сплаве титана повышает это температурное значение. Область существования α-модификации расширяется. А эти элементы называют α-стабилизаторами.

Олово и цирконий не изменяют температуру α/β-превращений. Поэтому их считают нейтральными упрочнителями титана.

Все остальные легирующие добавки к титановым сплавам считаются β-стабилизаторами. Растворимость их в модификациях титана зависит от температуры. А это даёт возможность повышать прочность титановых сплавов с этими добавками с помощью закалки и старения. Используя разные типы легирующих добавок, получают титановые сплавы с самыми различными свойствами.

Для создания литых коронок, мостовидных протезов, каркасов дуговых (бюгельных), шинирующих протезов, литых металлических базисов применяется литьевой титан ВТ-5Л. Температура плавления титанового сплава составляет 1640°С.

Сплав ВТ5 (ВТ5Л) легирован только алюминием. Алюминий относится к числу наиболее распространенных легирующих элементов в титановых сплавах. Это обусловлено следующими преимуществами алюминия перед остальными легирующими компонентами:

  1. алюминий широко распространен в природе, доступен и стоит сравнительно дешево;
  2. плотность алюминия значительно меньше плотности титана, и поэтому введение алюминия повышает их удельную прочность;
  3. с увеличением содержания алюминия повышается жаропрочность и сопротивление ползучести сплавов титана;
  4. алюминий повышает модули упругости;
  5. с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Сплав ВТ5 отличается от технического титана большей прочностью и жаропрочностью. Вместе с тем алюминий значительно уменьшает технологическую пластичность титана. Сплав ВТ5 деформируется в горячем состоянии: куется, прокатывается, штампуется. Тем не менее, его предпочитают применять не в деформированном состоянии, а в виде фасонного литья (в этом случае ему присваивают марку ВТ5Л). [4]

Для имплантации применяется титан ВТ-6. Сплавы типа ВТ6 (Ti-6A1-4V) (α β)-класса относятся к числу наиболее распространенных титановых сплавов и в других сферах.

Такое широкое распространение этого сплава объясняется удачным его легированием. Алюминий в сплавах системы Ti-Al-V повышает прочностные и жаропрочные свойства, а ванадий относится к числу тех немногих легирующих элементов в титане, которые повышают не только прочностные свойства, но и пластичность.

Наряду с высокой удельной прочностью сплавы этого типа обладают меньшей чувствительностью к водороду по сравнению со сплавами ОТ4 и ОТ4-1, низкой склонностью к солевой коррозии и хорошей технологичностью.

Сплавы типа ВТ6 применяют в отожженном и термически упрочненном состояниях. Двойной отжиг также позволяет повысить вязкость разрушения и сопротивление коррозионному разрушению.

Титан марки ВТ1-00 листовой используется для штампованных коронок (толщина 0,14-0,28 мм), штампованных базисов (0,35-0,4 мм) съемных протезов, каркасов титанокерамических протезов, имплантатов различных конструкций.

Металлургическая промышленность поставляет полуфабрикаты технического титана двух марок ВТ1-00 и ВТ1-0 отличающихся содержанием примесей (кислорода, азота, углерода, железа, кремния и др.). Это материалы малой прочности, причем титан ВТ1-00, содержащий меньше примесей, отличается меньшей прочностью и большей пластичностью. Основное достоинство титановых сплавов ВТ1-00 и ВТ1-0 — высокая технологическая пластичность, что позволяет получать из них даже фольгу.

Прочностные свойства титана могут быть повышены нагартовкой (наклёпом), но при этом сильно снижаются пластические свойства. Снижение характеристик пластичности выражено сильнее, чем повышение характеристик прочности, так что нагартовка не самый лучший способ улучшения комплекса свойств титана. К недостаткам титана следует отнести высокую склонность к водородной хрупкости, в связи с чем, содержание водорода не должно превышать 0,008 % в титане ВТ1-00 и 0,01 % в ВТ1-0.

Физические свойства, фазы оксидации и изменение кристаллической решетки должны учитываться при обработке титана. Правильная обработка может успешно производиться только специальными фрезами для титана, со специальной крестообразной насечкой (рис.2). Уменьшенный угол рабочей поверхности, который дает возможность оптимально снимать достаточно мягкий металл, с одновременно хорошим охлаждением инструмента. Обработка титана должна производиться без сильного давления на инструмент.

Рис.2. Фрезы для обработки титана.

ПОДРОБНОСТИ:   Эндопротез для паховой грыжи

Фрезы для титана должны храниться отдельно от других инструментов. Они должны регулярно очищаться пароструйным аппаратом и щеточками из стекловолокна от остатков титановой стружки, которая достаточно прочно осаждается.

При использовании неправильного инструмента, или сильном нажиме возможны локальные перегревы металла, сопровождаемые сильным образованием оксида и изменением кристаллической решетки. Визуально на обрабатываемом объекте происходит изменение цвета и слегка грубеет поверхность. В этих местах не будет необходимого сцепления с керамикой (возможность появления трещин и сколов), если это не облицовываемые участки, то дальнейшая обработка и полировка будет также не соответствовать предъявляемым требованиям.

Использование при обработке титана различных карборундовых дисков и камней, или алмазных головок сильно загрязняет поверхность титана, что приводит в дальнейшем также к трещинам и сколам в керамике. Поэтому использование вышеперечисленных инструментов пригодно только для обработки, например, каркасов бюгельных протезов, а использование алмазных головок следует полностью исключить.

Шлифовка и дальнейшая полировка открытых участков титана возможна только при помощи адаптированных для титана шлифовальных резиновых головок и полировочных паст. Многие фирмы, занимающиеся производством вращающихся инструментов, выпускают на данный момент большой ассортимент фрез и шлифовальных резиновых головок для титана.

Подходящие для титана параметры обработки:

  • Низкая скорость вращении наконечника – макс. 15 000 об/мин;
  • Низкое давление на инструмент;
  • Периодическая обработка;
  • Обработка каркаса только в одном направлении;
  • Избегать острых углов и напусков металла;
  • При шлифовке и полировке использовать только подходящие шлифовальные резиновые головки и полировочные пасты;
  • Периодическая чистка фрез пароструйным аппаратом и кисточкой из стекловолокна.

Пескоструйная обработка, перед нанесением бондингового слоя при керамическом покрытии так же, как и при облицовке композитными материалами, должна соответствовать следующим требованиям:

  • Чистый, только одноразовый оксид алюминия;
  • Максимальная величина зерна песка 150 µm, оптимально 110–125 µm;
  • Максимальное давление из карандаша 2 бара;
  • Направление потока песка под прямым углом к поверхности.

После обработки необходимо оставить обработанный объект на 5–10 мин пассивироваться, после чего произвести чистку поверхности паром.

Оксидный обжиг или похожие процедуры при работе с титаном полностью исключаются. Использование кислот или травление также полностью исключено.

2.6.Выводы по второй главе.

Исходя из материала, представленного выше, можно сделать вывод, что сплавы титана обладают существенным количеством очень важных свойств, которые незаменимы в зубном протезировании. Основные из них это биоинертность, коррозионная стойкость, прочность и твёрдость при малом удельном весе. Однако, получение титана считается дорогостоящим процессом, но так как его количество, применяемое при изготовлении протеза, является небольшим, то это не сильно влияет на стоимость. Но из-за того, что технология производства протезов из титана более дорогостоящая протезы из титана стоят дороже, чем КХС или нержавеющей стали.

Также до недавнего времени проблемы вызывала обработка титана, но появление и распространение специальных инструментов, сделало возможным применения титановых сплавов в стоматологии. Положительные свойства титана были известны и раньше, но именно длительная и дорогостоящая обработка была тем самым препятствием для его внедрения в стоматологическую практику.

Несмотря на специфические требования, которые отсутствуют при обработке других металлов, и особенности инструментов, целый список положительных качеств титана всё же привело к усовершенствованию процессов работы с ним. Химические свойства титана с одно стороны открывают новые возможности для зубных техников, но с другой требуют более тщательного соблюдения технологии обработки и учёта всех особенностей.

Из всего изложенного выше можно сделать определённые выводы. Титан был известен ещё с давних времён, но не находил применения в стоматологии по причине того, что долгое время не было технологий, для его обработки. С течением времени ситуация начала меняться и на сегодняшний день титан обрабатывают несколькими способами без ущерба эстетики конечных реставраций.

ПОДРОБНОСТИ:   Использует эндопротез тазобедренного сустава

С момента прихода титана в стоматологию и по настоящее время появилось множество методов его обработки. Все они имеют как свои недостатки, так и свои достоинства. Такое разнообразие естественно является неоспоримым плюсом титана, так как каждая лаборатория, и каждый зубной техник в частности может выбрать для себя именно тот метод работы с титаном, который больше подходит в зависимости от поставленных задач.

Проведя анализ литературы, мы установили, что из всех существующих или известных методов обработки титана в стоматологии самым перспективным и лучшим методом является метод 3Д печати титаном, так как именно он обладает наибольшим количеством преимуществ и практически не имеет недостатков.

Преимущества и недостатки методов фиксации

Изучение отечественной и зарубежной литературы, сравнительный анализ, систематизация.

Высокая реакционная способность титана, высокая точка плавления требуют специальную литейную установку и паковочную массу. В данное время на рынке известны несколько систем, которые позволяют производить литьё титана.

В качестве примера можно привести литейные установки Аутокаст, которые основаны на принципе плавки титана в защитной среде аргона на медном тигле посредством вольтовой дуги, точно также в промышленности сплавляют титановую губку для получения чистого титана. Заливка металла в кювету происходит при помощи вакуума в литейной камере и повышенного давления аргона в плавильной — во время опрокидывания тигля.

Внешний вид и принцип, как функционирует установка, показан на рисунке 3.

  Рис.3. Фото и принцип действия литейной установки.

В начале процесса обе камеры плавильная (вверху) и литейная (внизу) продуваются аргоном, затем из обеих камер эвакуируется смесь воздуха и аргона, после чего плавильная камера заполняется аргоном, а в литейной образуется вакуум. Включается вольтовая дуга и начинается процесс плавления титана. После прохождения определенного времени резко опрокидывается плавильный тигель и металл всасывается в находящуюся в вакууме форму, собственный вес, а также повышающееся давление аргона на этот момент также способствуют заполнение им литьевой формы. Этот принцип даёт возможность получать хорошие, плотные отливки из чистого титана.

Следующим компонентом литейной системы является паковочная масса. Так как в расплавленном состоянии реакционная способность титана очень высока, то он требует специальных паковочных масс, которые изготавливаются на основе оксидов алюминия и магнезии, которые в свою очередь позволяют снизить реакционный слой титана до минимума.

Правильное создание литниковой системы, так же, как и правильное расположение в кювете играет огромную роль и производится строго по правилам, предложенным фирмой производителем литейных установок. Для коронок и мостов допустимо использование только специального литьевого конуса, который позволяет оптимально направлять металл к отливаемому объекту. Высота входного литникового канала от конуса до питающей балки 10 мм при его диаметре 4–5 мм. Диаметр питающей балки 4 мм [7].

Подводные литниковые каналы к отливаемому объекту имеют размер диаметром 3 мм и высотой также не более 3 мм. Очень важно: подводные каналы не должны располагаться напротив входного литникового канала (рис.4), в противном случае очень высока возможность возникновения газовых пор.

Рис.4. Пример расположения подводных каналов для литья титановых сплавов.

Все соединения должны быть очень гладкими, без острых углов и т.д. чтобы максимально снизить возникающую во время заливки металла турбулентность, которая приводит к образованию газовых пор. Литниковая система для бюгельных протезов, а особенно для цельнолитых базисов полных съёмных протезов также отлична, от литниковых систем, которые мы применяем для отливки бюгельных протезов из хром-кобальтовых сплавов.

Для зуботехнического применения переход титана при температуре 882,5 °С из одного кристаллического состояния в другое имеет очень большое значение. Титан переходит при этой температуре из α-титана с гексагональной кристаллической решеткой в β-титан с кубической. Что влечет за собой, не только изменение его физических параметров, но и увеличение на 17% его объёма.

По этой причине также необходимо использование специальных керамик, температура обжига которых должна находиться ниже 880 °С.

У титана очень сильное стремление при комнатной температуре с кислородом воздуха образовывать мгновенно тонкий защитный оксидный слой, который защищает его в дальнейшем от коррозии и обуславливает хорошую переносимость титана организмом. Это так называемый пассивный слой.

Пассивный слой имеет способность самостоятельно регенерироваться. Этот слой, на различных этапах работы с титаном, должен гарантироваться. После пескоструйной обработки, перед чисткой каркаса паром, необходимо оставить каркас минимум 5 минут пассивироваться. Только что отполированный протез должен пассивироваться не менее 10-15 минут, в противном случае нет гарантии хорошего блеска готовой работы.

Ссылка на основную публикацию